Импульсная техника - definitie. Wat is Импульсная техника
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Импульсная техника - definitie

Импульсная передаточная функция; Импульсная переходная характеристика; Импульсный отклик; Импульсная характеристика

ИМПУЛЬСНАЯ ТЕХНИКА      
область техники, предмет которой - разработка теоретических основ, практических методов и технических средств генерирования (формирования), преобразования и измерения параметров электрических импульсов, а также исследование импульсных процессов в электрических цепях (главным образом в автоматике, вычислительной технике, различных областях радиоэлектроники, в электротехнике, экспериментальной физике).
Импульсная техника      
I И́мпульсная те́хника

область техники, исследующая, разрабатывающая и применяющая методы и технические средства генерирования (формирования), преобразования и измерения электрических импульсов (см. Импульс электрический). В И. т. также исследуют и анализируют процессы, возникающие при воздействии электрических импульсов на различные электрических цепи, устройства и объекты.

Электрические импульсы тока и напряжения широко используются для тех или иных целей в различных областях науки и техники (см. Импульсная техника высоких напряжений). Наиболее широко электрические импульсы применяются в электронике при импульсном режиме работы электронных устройств различного назначения. Здесь находят применение как одиночные импульсы (радиоимпульсы и видеоимпульсы), так и главным образом последовательности импульсов (серии импульсов), образующих импульсные сигналы, несущие информацию или выполняющие функции управления работой электронных устройств.

При импульсном режиме электронные устройства подвергаются воздействию электрических сигналов не непрерывно (в течение всего времени работы устройства), а прерывисто. При этом прерывистая структура импульсных сигналов составляет принципиальную основу полезных функций устройства, работающего в импульсном режиме. Импульсные сигналы различаются по амплитуде и длительности импульсов, частоте их следования, а также по относит. взаимному расположению в серии. На рис. 1 изображен импульсный сигнал в виде серии из 3 импульсов, сгруппированных согласно некоторому условному коду, определяемому, в частности, расстановкой импульсов в серии. Импульсные сигналы могут иметь более сложную структуру, зависящую от вида модуляции (См. Модуляция) и формы импульса. Некоторые электрические колебания сложной формы (рис. 2), в отличие от синусоидальных, имеют разрывной характер; им свойственны весьма широкий частотный спектр и наличие характерных точек, точнее участков весьма малой временной протяжённости, в которых скорость изменения колебательного процесса претерпевает резкие скачки (разрывы). Эти свойства сближают колебания сложной формы с типичными импульсными процессами. В И. т. часто применяют импульсные сигналы с частотным заполнением от десятков гц до десятков Ггц.

При импульсном режиме работы может быть достигнута высокая степень концентрации энергии во времени; так, например, в мощных импульсных модуляторах в течение длительного промежутка времени между импульсами происходит относительно медленное запасание энергии в накопительных элементах, затем в течение отрезка времени, протяжённость которого значительно меньше периода накопления, запасённая энергия выделяется в нагрузочном элементе. В результате удаётся получать электрические импульсы, мощность которых значительно превосходит номинальную мощность источников питания, что имеет существенное значение при конструировании радиоэлектронной аппаратуры; например, мощность в радиоимпульсе, излучаемом радиолокационной станцией, достигает десятков Мвт и более. Благодаря резким перепадам амплитуды электрических импульсов возможна весьма точная фиксация времени воздействия импульсных сигналов, а также чёткое разделение двух возможных состояний электронной схемы: "есть ток" - "нет тока" ("да" - "нет"). Импульсные электронные устройства, выполняющие функции бесконтактных электронных ключей, способны за 10-6 и даже 10-9 сек переключать электрические цепи.

С понятием "импульс" обычно связывается представление о малой его длительности. Однако кратковременность импульса - понятие относительное: в зависимости от области использования длительность импульса может изменяться в значительных пределах. В автоматике (См. Автоматика), например, оперируют с импульсами длительностью порядка 0,01 - 1 сек, в импульсной радиосвязи (См. Импульсная радиосвязь) - 10-6 сек, в физике быстрых частиц - 10-9 сек. Однако даже в одной и той же области техники часто применяют импульсы с различной длительностью и частотой следования. Так, например, в радиолокации (См. Радиолокация) работают с электрическими импульсами длительностью от 10-3 до 10-9 сек с частотой повторения от единиц гц до 104 гц. В И. т. проявляется тенденция к укорочению импульсов и увеличению частоты их следования, стремлением повысить эффективность электронных устройств, разрешающую способность (например, радиолокаторов) или быстродействие (в ЭВМ). Иногда более важно отношение длительности паузы между импульсами к длительности импульса (скважность), которое в цифровой автоматике обычно не превышает 10, в радиосвязи - порядка 10 - 100, в радиолокации колеблется от 100 до 10000. При воздействии импульсов электрического тока или напряжения на цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в И. т. весьма велико. Явления, связанные с переходными процессами, часто используют в работе импульсных устройств, но в ряде случаев они оказывают вредное влияние и приводят к схемному и конструктивному усложнению устройств. Поэтому анализу переходных процессов в И. т. уделяется особенно большое внимание. Специфичность методов и средств формирования, преобразования, измерения и регистрации импульсных сигналов и анализа процессов в импульсных устройствах обусловлены главным образом их нестационарностью.

Для получения импульсов различной формы, функционального преобразования импульсных сигналов, селекции импульсов по тому или иному признаку, а также для выполнения логических операций над ними служат типовые импульсные логические схемы и устройства. К ним относятся линейные устройства формирования импульсов, преобразования их формы, амплитуды, полярности и временного положения (формирующие линии, дифференцирующие и интегрирующие цепи, импульсные трансформаторы и усилители, электромагнитные и ультразвуковые линии задержки); нелинейные устройства преобразования импульсов и переключения цепей (ограничители, фиксаторы уровня, Пик-трансформаторы, магнитные генераторы импульсов, электронные ключи и др.); регенеративные спусковые схемы (См. Спусковая схема), и генераторы импульсов (пересчётные схемы, Триггеры, мультивибраторы, Блокинг-генераторы); импульсные делители частоты повторения; электронные генераторы линейно-изменяющегося тока и напряжения (в т.ч. Фантастроны, Санатроны и др.); селекторы импульсов; логич. схемы и спец. устройства обработки импульсных сигналов (кодирующие и декодирующие устройства, Дешифраторы, Регистры, матрицы, элементы памяти ЭВМ и др.).

Импульсные методы работы широко используются в телевидении (См. Телевидение), где сигналы изображения и синхронизации - импульсные; с помощью радиоимпульсов удалось решить такую важную задачу, как измерение расстояний, что обусловило развитие импульсной радиолокации и радионавигации (в системах обнаружения, в радиовысотомерах, в навигации кораблей и самолётов). Импульсное кодирование сообщений, основанное на различных принципах импульсной модуляции, позволяет осуществлять радиосвязь с высокой помехозащищенностью, а также многоканальную радиосвязь (с разделением каналов по времени) в телеметрии. Перспективно использование импульсных режимов в радиоуправлении на большом расстоянии, например искусственными спутниками Земли (См. Искусственные Спутники Земли), космическими кораблями, луноходами.

Импульсные методы имеют существенное значение в информационно-измерительной технике, используемой, в частности, в космической электронной аппаратуре и при исследованиях в области физики быстрых частиц. Методы и средства И. т. лежат в основе работы современных электронных ЦВМ, разнообразных цифровых автоматов, применяемых не только как средство автоматизации вычислительного процесса, но и для решения различных логических задач при автоматической обработке информации. Для этого производятся соответствующие преобразования над импульсными сигналами, несущими информацию (обычно в сопровождении помех), и с помощью логических схем и устройств селекции импульсов выполняются логические операции над импульсами. Т. о. выделяют, анализируют, распознают и регистрируют полезную информацию, содержащуюся в обрабатываемых импульсах. Исключительно широко применяются методы И. т. в радиоизмерительных устройствах (Частотомерах, Осциллографах, анализаторах спектра (См. Анализатор спектра), измерителях временных интервалов и др.).

Первое практическое применение импульсных режимов работы электрических устройств связано с изобретением русским учёным П. Л. Шиллингом электромагнитного Телеграфа (1832), усовершенствованного русским академиком Б. С. Якоби и американским изобретателем С. Морзе. Изобретатель радио А. С. Попов для генерации радиоволн применил импульсный искровой передатчик (1895). В 1907 русский учёный Л. И. Мандельштам выдвинул идею использования изменяющихся по известному закону электрических величин для создания точного масштаба времени, которая была реализована в устройстве временной развёртки осциллографа; так был открыт способ исследования кратковременных импульсных процессов. В том же 1907 русский учёный Б. Л. Розинг впервые в мире использовал электроннолучевую трубку для приёма сигналов изображения. Этим было положено начало телевидению. В 1918 советский учёный М. А. Бонч-Бруевич разработал и исследовал "катодное реле", позволяющее скачком изменять силу тока электронных ламп и напряжение на их электродах. В 1919 в журнале "Annales de Physique" американские учёные Х. Абрагам и Е. Блох опубликовали статью с описанием др. подобного устройства - мультивибратора; тогда же американские учёные В. Иклс и Ф. Джордан разработали схему триггера; мультивибратор и триггер широко используются в современной И. т. В конце 20-х гг. в связи с распространением коротковолновой радиосвязи (См. Радиосвязь) возникла необходимость измерения высоты ионизированных слоев атмосферы. Первая в СССР установка для импульсного измерения расстояний была создана в 1932 под рук. М. А. Бонч-Бруевича. Принципы работы этой установки впоследствии нашли применение в импульсной радиолокации. Быстрое развитие И. т. стимулировалось совершенствованием радиосвязи, телевидения, радиолокации, радионавигации, телеуправления, телеметрии, вычислительной техники. Этому способствовало также решение ряда теоретич. проблем, в том числе теории нелинейных и разрывных колебаний, разработанной советскими радиофизиками А. А. Андроновым, А. А. Виттом и С. Э. Хайкиным. Исключительно важно для совр. состояния и дальнейшего развития И. т. совершенствование полупроводниковой электроники и интегральных схем (См. Интегральная схема).

Лит.: Моругин Л. А., Глебович Г. В., Наносекундная импульсная техника, М., 1964; Магнитные генераторы импульсов, М., 1968;ГольденбергЛ.М., Теория и расчёт импульсных устройств на полупроводниковых приборах, М., 1969; Справочник по импульсной технике, под ред. В. Н. Яковлева, К., 1970; Алексенко А. Г., Основы микросхемотехники, М., 1971; Ицхоки Я. С., Овчинников Н. И., Импульсные цифровые устройства, М., [1972]; Миллман Я., Тауб Г., Импульсные и цифровые устройства, пер. с англ., М. - Л., 1960; Харли Р. Б., Логические схемы на транзисторах, пер. с англ., М., 1965; Чжоу В. Ф., Принципы построения схем на туннельных диодах, пер. с англ., М., 1966; Vabre I.-P., Electronique des impulsions, t. 3, P., 1970.

Я. С. Ицхоки.

Рис. 1. Импульсный сигнал из трёх прямоугольных импульсов.

Рис. 2. Электрические колебания сложной формы: а - пиковые; б - пилообразные.

II И́мпульсная те́хника

высоких напряжений, область электротехники, предметом которой является получение, измерение и использование импульсов высоких напряжений (амплитудой от 102 в до 107 в) и импульсов сильных токов (амплитудой от 102 а до 107 а). Длительность импульсов варьируется в пределах от 10-1 до 10-10 сек. Это могут быть одиночные импульсы или повторяющиеся с большой Скважностью.

Импульсы высоких напряжений используются при испытании электротехнической аппаратуры, имитации внутренних и грозовых перенапряжений в электрической сети, для моделирования молниезащитных устройств и т. д. В экспериментальной физике импульсы высоких напряжений применяются для создания сильных импульсных электрических полей при исследовании процессов электрического пробоя, для получения кратковременных (10-7-10-6 сек) вспышек рентгеновского излучения, для питания искровых камер (См. Искровая камера), электронно-оптических преобразователей (См. Электроннооптический преобразователь), Керра ячеек (См. Керра ячейка), в ускорителях заряженных частиц (См. Ускорители заряженных частиц), для создания импульсных электронных и ионных пучков.

Импульсы напряжений амплитудой до 107 в получают от генераторов импульсных напряжений (ГИН). Они содержат группу конденсаторов С (рис. 1), которые при зарядке от источника ПН соединены параллельно через сопротивления R. Когда напряжение на конденсаторах достигает требуемой величины, они с помощью искровых промежутков П включаются последовательно (схема Аркадьева - Маркса). Длительность фронта и спада импульса регулируется демпфирующими Rд и разрядным Rp сопротивлениями, ёмкостью Сф и ёмкостью нагрузки О.

Для получения импульсов с амплитудой 106 в, длительностью фронта Импульсная техника 10-4 сек и спада Импульсная техника 10-3 сек, помимо ГИН, иногда используют испытательные высоковольтные трансформаторы, первичные обмотки которых питаются от конденсаторных батарей. Для получения импульсов с более крутым фронтом применяют специальный конденсатор, заряжаемый от ГИН и разряжающийся через дополнительный искровой "обостряющий" промежуток.

Импульсы с длительностью фронта Импульсная техника 10-9 сек и полной длительностью Импульсная техника 10-8-10-7 сек при амплитуде 104-106 в получают от генераторов наносекундных импульсов. Схема одного из них отличается от рис. 1 заменой конденсаторов отрезками коаксиального кабеля (обладающего распределённой ёмкостью) и отсутствием сопротивлений Rд и Rф. Наносекундные импульсы получают также с помощью отрезков коаксиального кабеля, соединённых по схеме рис. 2; отрезка трёхполосной полосковой линии (схема Блюмлейна, рис. 3), полосковой линии, свёрнутой в спираль (спиральный генератор, рис. 4) и др. В последних двух генераторах происходит удвоение (рис. 3) или умножение (рис. 4) напряжения после пробоя искрового промежутка П и отражения волны напряжения от конца линии. Если к форме импульса напряжения не предъявляются специальные требования, то для получения импульсов с амплитудой Импульсная техника 104-105 в применяют импульсные трансформаторы (катушки Румкорфа, трансформатор Тесла и др.).

Амплитуды импульсов измеряются с помощью специальных ёмкостных, омических или смешанных делителей напряжения.

Импульсы сильных токов применяются: 1) для создания импульсных магнитных полей в термоядерных установках, ускорителях заряженных частиц, при ускорении плазмы (См. Плазма), и металлических тел, при магнитно-импульсной обработке металлов, в быстродействующих электромагнитных клапанах, импульсном электроприводе и т. д.); 2) для быстрого нагрева газа и проводников (нагрев газа при аэродинамических и термоядерных исследованиях, получение мощных ударных волн (См. Ударная волна) и расходящихся потоков жидкости для эхолокации и сейсморазведки, деформирование и разрушение материалов, электрический взрыв проводников, питание импульсных источников света (См. Импульсные источники света), электроэрозионная обработка металлов, импульсная сварка и др., см. Электрофизические и электрохимические методы обработки); 3) для испытания электротехнических устройств, коммутационной аппаратуры, моделирования разрушающего действия тока молнии и т. д.

Источниками импульсов тока служат: ударные электрические генераторы, накапливающие энергию до 108 дж в виде кинетической энергии массивного ротора (см. Генератор электромашинный); аккумуляторы, конденсаторные батареи (ёмкостные накопители), заряжаемые от источника постоянного напряжения (например, контур Горева); индуктивные накопители (накопление энергии происходит в катушке индуктивности); взрывные генераторы, в которых происходит уменьшение объёма контура или катушки с током при взрыве или под действием магнитного поля (рис. 5).

Для присоединения нагрузки к импульсным источникам сильных токов используют Тиратроны, (при токе до 103-104 а и напряжении Импульсная техника 20-30 кв), Разрядники с повышенным и атмосферным давлением (токи до 106 а и напряжения до 105 в), вакуумные разрядники с непрерывной откачкой (токи до 106 а, напряжения до 10-20 кв) и запаянные (токи до 103 а и напряжения до 105в). Применяются также разрядники с твёрдым диэлектриком, заменяемым после каждого разряда (токи Импульсная техника 106 а, напряжения Импульсная техника 104 в). Для согласования ёмкостных и индуктивных накопителей с нагрузкой применяются импульсные трансформаторы. Измерение импульсных токов проводится с помощью Шунтов или измерительных трансформаторов (пояса Роговского) с интегрирующими цепями. Для этой же цели применяются устройства, использующие явление вращения плоскости поляризации (См. Вращение плоскости поляризации) (угол поворота плоскости поляризации пропорционален напряжённости магнитного поля, создаваемого измеряемым током).

Лит.: Техника высоких напряжений, под ред. Л. И. Сиротинского, ч. 1, М., 1951; Гончаренко Г. М., Жаков Е. М., Дмоховская Л. Ф., Испытательные установки и измерительные устройства в лабораториях высокого напряжения, М., 1966; Фрюнгель Ф., Импульсная техника. Генерирование и применение разрядов конденсаторов, пер. с нем., М.-Л., 1965; Техника больших импульсных токов и магнитных полей, под ред. В. С. Комелькова, М., 1970; Месяц Г. А., Насибов А. С., Кремнев В. В., Формирование наносекундных импульсов высокого напряжения, М., 1970; Физика быстропротекающих процессов, пер. с нем., под ред. Н. А. Златина, т. 1, М., 1971.

И. П. Кужекин.

Рис. 1. Схема генератора импульсных напряжений (ГИН, или схема Аркадьева - Маркса): ПН - источник постоянного напряжения; С - конденсаторы; R - зарядные сопротивления; Rд - демпфирующие сопротивления: Rp - разрядное сопротивление; П - искровые промежутки; О - объект испытания.

Рис. 2. Схема кабельного генератора наносекундных импульсов высокого напряжения; К - отрезки коаксиального кабеля; П - искровой промежуток; О - нагрузка.

Рис. 3. Схема генератора Блюмлейна: ИП - источник постоянного напряжения или ГИН; Л - трёхполосная полосковая линия.

Рис. 4. Спиральный генератор.

Рис. 5. Амплитуды и длительности токов, получаемых от различных импульсных источников тока: I - взрывные генераторы; II - ёмкостные накопители энергии; III - индуктивные накопители: IV - импульсные аккумуляторы; V - контур Горева; VI - ударные генераторы.

Импульсная переходная функция         
Импульсная переходная функция (весовая функция, импульсная характеристика) — выходной сигнал динамической системы как реакция на входной сигнал в виде дельта-функции Дирака. В цифровых системах входной сигнал представляет собой простой импульс минимальной ширины (равной периоду дискретизации для дискретных систем) и максимальной амплитуды.

Wikipedia

Импульсная переходная функция

Импульсная переходная функция (весовая функция, импульсная характеристика) — выходной сигнал динамической системы как реакция на входной сигнал в виде дельта-функции Дирака. В цифровых системах входной сигнал представляет собой простой импульс минимальной ширины (равной периоду дискретизации для дискретных систем) и максимальной амплитуды. В применении к фильтрации сигнала называется также ядром фильтра. Находит широкое применение в теории управления, обработке сигналов и изображений, теории связи и других областях инженерного дела.

Voorbeelden uit tekstcorpus voor Импульсная техника
1. Основные направления научной деятельности: сильноточная эмиссионная электроника, ускорители, наносекундная импульсная техника.
Wat is ИМПУЛЬСНАЯ ТЕХНИКА - definition